Abstract

Mg–Ni alloys are among the most promising candidates for solid-state hydrogen storage systems. This paper reveals the effect of Na doping in accelerating initial hydrogen uptake in Mg–Ni alloys using in-situ Synchrotron X-ray powder diffraction. A minimum concentration of approximately 0.2 wt.% Na must be achieved for the alloys to show reasonably fast hydriding kinetics. Surface analysis shows that a Na-modified Mg–Ni surface facilitates the chemisorption and dissociation of hydrogen molecules in the early stage of hydriding as evidenced by a rapid formation of the saturated hydrogen solid solution Mg2NiH0.3 from the original Mg2Ni. The subsequent hydrogen absorption is based on a mechanism of nucleation and growth of MgH2 where a high density of dislocations develops ahead of the growing hydride-metal interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call