Abstract

In the present study, small amounts of nanodiamond particles were added to Sn-3.0Ag-0.5Cu eutectic solder to investigate the growth kinetics of the intermetallic compound (IMC) layer at ball grid array pad/solder interfaces. The IMC growth behavior was found to be comparatively slower than that of plain solder joints due to a change in the diffusivity of the constituent atoms and the thermodynamic parameters of elemental affinity. The solder joints containing nanodiamond particles consistently showed higher hardness and strength than plain Sn-3.0Ag-0.5Cu solder joints, after a number of reflow cycles. The hardness of the doped solder was enhanced due to the homogeneous dispersion of nanoparticles, refining IMC phases which act as reinforcements in the solder matrix and as barriers to movement of dislocations. The fracture surface after shear testing of plain solder exhibited a relatively smooth fracture surface, while doped solder joints showed ductile failures with very rough dimpled surfaces. The damping capacity of the doped solder was better than the plain solder at a wide range of temperatures, and the solder with nanoparticle diamond exhibited lower internal friction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.