Abstract

Modern electronic components put forward higher requirements for copper-based alloys, hoping to have high elastic properties and stress relaxation resistance. The addition of Fe increased the dislocation density, tensile strength, and the number of deformed bands after cold rolling. After cold rolled by 94% and aged at 450 °C for 5 min, the hardness, tensile strength, and elongation of the CuTiCrMg–Fe alloy was 448 HV, 1610 MPa and 4.75%, respectively. Adding Fe can improve the stress relaxation resistance of samples, and the stress relaxation rate of the CuTiCrMg–Fe alloy was 14.7% after loading at 200 °C for 100 h. The stress relaxation process of Cu–Ti alloys is mainly divided into the dislocation's reaction stage and dislocations and precipitates' interaction stage. These findings have important implications for the development of Cu–Ti alloys with high strength and high-stress relaxation resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.