Abstract

Xanthine oxidoreductase exists both intracellularly and extracellularly and induces vascular injury by producing reactive oxygen species (ROS). Here, we investigated the effects and mechanism of action of topiroxostat, a xanthine oxidase inhibitor, on ROS using an animal model of type 1 diabetes with persistent hyperglycemia. Six-week-old male Sprague-Dawley rats were administered 50 mg/kg streptozotocin to induce diabetes; at 8 weeks of age, animals were administered topiroxostat (0.3, 1, or 3 mg/kg) for 2 weeks through mixed feeding after which the aorta was sampled. The production of superoxide, a type of ROS, was measured by chemiluminescence and dihydroethidium staining. Cytotoxicity was evaluated by nitrotyrosine staining. Topiroxostat at 3 mg/kg significantly decreased blood urea nitrogen, e-selectin, urinary malondialdehyde, and the urinary albumin/creatinine ratio compared with the streptozotocin group. Superoxide production by xanthine oxidase anchored to the cell membrane was significantly decreased by topiroxostat at both 1 mg/kg and 3 mg/kg compared with the streptozotocin group. Dihydroethidium staining revealed no significant effect of topiroxostat administration on superoxide production. The fluorescence intensity of nitrotyrosine staining was significantly suppressed by 3 mg/kg topiroxostat. Topiroxostat was found to inhibit the production of ROS in the thoracic aorta and suppress vascular endothelial damage. The antioxidant effect of topiroxostat appears to be exerted via the inhibition of anchored xanthine oxidase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call