Abstract

The aim of the present study was to investigate the effect of tumor necrosis factor-α (TNF-α) on the proliferation and osteogenesis of human periodontal mesenchymal stem cells (hPDLSCs). Antigen expression in hPDLSCs was detected by flow cytometry. hPDLSCs were divided into four groups: A control group with no TNF-α treatment, and three experimental groups treated with 0.1, 1 and 10 ng/ml TNF-α, respectively. The effect of TNF-α on proliferation of hPDLSCs in vitro was detected using a Cell Counting Kit-8 assay. Differentiation into an osteogenic lineage was detected by alkaline phosphatase sand alizarin red staining, and the mRNA and protein expression levels of runt-related transcription factor 2 (Runx2), osteocalcin (OCN) and type I collagen (Col-I) were detected using reverse transcription-quantitative PCR and western blot respectively. Following treatment with 10 ng/ml TNF-α, proliferation was significantly increased compared with an untreated control group (P<0.01). Additionally, there was a significant inhibition of alkaline phosphatase enzyme activity, alizarin red mineralization node size, and in the gene and protein expression levels of osteogenic differentiation markers, including Runx2, OCN and COL-I (all, P<0.05). Taken together, the results indicated that treatment with 10 ng/ml TNF-α promoted the proliferation of hPDLSCs in vitro and inhibited osteogenic differentiation of hPDLSCs, providing an experimental basis for regulation of hPDLSC-mediated periodontal tissue regeneration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.