Abstract

In this paper, the effect of titanium (IV) isopropoxide TTIP molarity on the crystallinity and TiO2 thin film properties deposited via green sol–gel route was reported. The green sol–gel route is a pioneering approach for eco-friendly coating where solvent is not utilized in the sol formulation. This is in contrast to the common TiO2 sol formulation where solvent is used despite the long term harmful the environment. TiO2 solution with different TTIP molarity of 0.2M, 0.3M, 0.4M and 0.5M were utilized during coating deposition. Deposition were conducted for ten times using dip coating and treated at 500°C (1-h). The crystalline phases and phase content were characterized using X-ray diffraction (XRD) and reference intensity ratio (RIR) equation. Crystallites size was obtained by Scherrer's equation while coating morphologies was analyzed using scanning electron microscope (SEM). The photocatalytic activity was conducted by the degradation of methylene blue (MB) towards UV-light and visible light. At higher TTIP molarity (0.5M), higher crystallinity of mixed anatase (∼17nm) and rutile (∼29nm) phases were obtained along with homogeneous coating (cracking and visible pore). Also, higher MB degradation were obtained at UV-light (95%) and visible-light (86%) irradiation. In conclusion, higher TTIP molarity produced TiO2 film with higher crystallinity, small crystallite size, cracking morphology thus contribute good performance in photocatalytic activity. Findings in this work shown that TiO2 thin film deposition is possible conducted without the use of solvent through optimized formulation of only precursor, acid and water. This is beneficial for the environment sustainability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call