Abstract
In this paper, the effect of titanium (IV) isopropoxide TTIP molarity on the crystallinity and TiO2 thin film properties deposited via green sol–gel route was reported. The green sol–gel route is a pioneering approach for eco-friendly coating where solvent is not utilized in the sol formulation. This is in contrast to the common TiO2 sol formulation where solvent is used despite the long term harmful the environment. TiO2 solution with different TTIP molarity of 0.2M, 0.3M, 0.4M and 0.5M were utilized during coating deposition. Deposition were conducted for ten times using dip coating and treated at 500°C (1-h). The crystalline phases and phase content were characterized using X-ray diffraction (XRD) and reference intensity ratio (RIR) equation. Crystallites size was obtained by Scherrer's equation while coating morphologies was analyzed using scanning electron microscope (SEM). The photocatalytic activity was conducted by the degradation of methylene blue (MB) towards UV-light and visible light. At higher TTIP molarity (0.5M), higher crystallinity of mixed anatase (∼17nm) and rutile (∼29nm) phases were obtained along with homogeneous coating (cracking and visible pore). Also, higher MB degradation were obtained at UV-light (95%) and visible-light (86%) irradiation. In conclusion, higher TTIP molarity produced TiO2 film with higher crystallinity, small crystallite size, cracking morphology thus contribute good performance in photocatalytic activity. Findings in this work shown that TiO2 thin film deposition is possible conducted without the use of solvent through optimized formulation of only precursor, acid and water. This is beneficial for the environment sustainability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.