Abstract

Gamma-ray treatment of phenol was studied in terms of both chemical degradation and toxicological change. About 90% of phenol (5.0 × 10(-4) M) in ultrapure water (UW) was eliminated by gamma-irradiation at a dose of 10 kGy, but acute toxicity was dramatically increased, particularly for dose of 1 kGy, due to the formation of more toxic by-products such as hydroquinone, benzoquinone, resorcinol and catechol. The addition of TiO(2) nanoparticles had little effect on the removal of phenol in UW, but substantially enhanced the mineralization of phenol compared with gamma-irradiation alone. Additionally, degradation of phenol by gamma-irradiation was inhibited in a wastewater effluent (WE) matrix, likely due to the presence of dissolved organic carbon (22.06 mg L(-1)). Furthermore, lower concentrations of toxic by-products were generated both in WE and in the presence of TiO(2) nanoparticles, resulting in reduction of toxicity increase by gamma-irradiation. Meanwhile, the toxicity of gamma-ray treated phenol in WE was well estimated with simple summation of individual toxicity of phenol and by-products (R (2) = 0.9678).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call