Abstract

The outer environment, especially UV portion of solar radiation and water (in the form of moisture or rain) has an adverse effect on the surface appearance of heat-treated wood. Exposure to UV triggers the chain scission reactions which change the intrinsic properties of heat-treated wood and discoloration of wood surface. Repeated temperature and humidity variations cause swelling and shrinking of wood surface, which consequently create cracks and fissures exposing wood's sub superficial layers to atmospheric agents. Therefore, wood industries move towards the development of coatings in order to protect the heat-treated wood while retaining wood's natural look. Water based acrylic polyurethane coatings are highly efficient, non toxic and durable coatings with upgraded film properties. In this study, an attempt is made to improve the performance of these coatings by incorporating natural antioxidant (bark extract) and inorganic UV absorbers (nano and micro titania and nano zinc oxide) into the coatings. The main objectives of this study are to investigate the wetting and penetration characteristic of these new coatings on the wood surface and to study coating thickness variation with weathering time. The Sessile-drop method and fluorescence microscope are used for this investigation. The wettability of different coatings applied to heat-treated jack pine early wood and late wood is compared. The results show that there is a significant difference between the contact angle of early wood and late wood for acrylic polyurethane coating containing titania micro particles. The contact angle between water and coated wood surface reveals that the degree of orientation of the coating materials increases as the weathering time increases. The penetration characteristics of all the four coatings are found to be very poor. In addition, the relationship between the coating thickness and the UV exposure time is studied for four water based acrylic polyurethane coatings with different additives. It is found that the coating thickness decreases with increasing weathering time and a tissue deformation beneath the coating surface takes place during weathering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call