Abstract

AbstractMicrowave Ablation (MA) has been playing a crucial role in the field of Cancer Treatment possessing a significant advantage over Radiofrequency Ablation (RFA). Due to the possibilities of treating tumors >3 cm in a shorter time with greater efficacy, MA has been proved as an alternative to RFA for treating cancerous tumors. The efficacy of MA can be determined by the output Ablation Zone generated to ablate the tumor from the targeted region. Thermal therapies highly depend on the tissue properties to successfully ablate the tumor from the targeted region. Tissue physical properties like Blood Perfusion Rate, Thermal, and Electrical Conductivity potentially affect the heat generation and the energy deposition over the tissue resulting in shorter ablation zones. Therefore, to understand the role of tissue properties like Blood Perfusion Rate, Thermal, and Electrical Conductivities, a finite element-based numerical study has been made to analyze the individual impact of these tissue properties on the Ablation Volume attained during the MA on lungs. It has been found that the higher values of Electrical Conductivity play a positive role during the treatment process as higher Electrical Conductivity results in larger ablation zones. Alternatively, the other tissue properties like the Blood Perfusion Rate (BPR), and the Thermal Conductivity have a negative correlation with the ablation volume, signifying a tissue with a higher rate of Blood Perfusion and Thermal Conductivity would make it difficult to generate an intense temperature profile, hence, leading to small ablation zones. The results obtained from the study clear out the individual impact of tissue properties during the Microwave Ablation. Understanding the effect of tissue properties would help clinical practitioners to adjust the optimal settings required for the MA to ablate the tumor in a short period without damaging the healthy tissue.KeywordsMicrowave ablationHyperthermiaComputational modelingThermal therapy

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call