Abstract

Optimization is an important but relatively unexplored aspect of contrast-enhanced fluorescence imaging, since minimizing contrast agent usage reduces the associated cost and potential toxicity. In a previous study, the authors developed a quantitative experimental approach to optimize quantum dot (QD)-based imaging using homogenized liver as a model tissue. In this follow-up study, the authors further extend and validate the approach using eight different tissues and five QDs emission wavelengths, and introduce quantitative imaging performance metrics, namely the threshold QD concentration and wavelength optimization gain. These metrics allow quantification of the improvements through spectral optimization in terms of reduced QD dose and identify the conditions that make the optimization process worthwhile. The authors show that, for most tissues, the most important parameter to optimize is the emission wavelength, yielding improvements of up to four orders of magnitude, followed by the excitation wavelength (up to 20-fold improvement) and the excitation filter bandwidth (up to 50% improvement). The authors also observe, by means of the optimization gain metric, that tissues exhibiting both high autofluorescence and strong pigmentation are generally better candidates for excitation wavelength optimization. This work contributes to the development of robust and quantitative dosimetry for QD-based fluorescence imaging near to the tissue surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.