Abstract

Tire wear particles (TWPs), as predominant microplastics (MPs) in road runoff, can be captured and retained by bioretention systems (BRS). This study aimed to investigate the effect of TWPs accumulation on nitrogen processes, focusing on soil characteristics, microbial community, and functional genes. Two groups of lab-scale bioretention columns containing TWPs (0 and 100 mg g−1) were established. The removal efficiencies of NH4+-N and TN in BRS significantly decreased by 7.60%–24.79% and 1.98%–11.09%, respectively, during the 101 days of TWPs exposure. Interestingly, the emission fluxes of N2O and CO2 were significantly decreased, while the emission flux of CH4 was substantially increased. Furthermore, prolonged TWPs exposure significantly influenced the contents of soil organic matter (increased by 27.07%) and NH4+-N (decreased by 42.15%) in the planting layer. TWPs exposure also significantly increased dehydrogenase activity and substrate-induced respiration rate, thereby promoting microbial metabolism. Microbial sequencing results revealed that TWPs decreased the relative abundance of nitrifying bacteria (Nitrospira and Nitrosomonas) and denitrifying bacteria (Dechloromonas and Thauera), reducing the nitrification rate by 42.24%. PICRUSt2 analysis further indicated that TWPs changed the relative abundance of functional genes related to nitrogen and enzyme-coding genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.