Abstract

Atomic force acoustic microscopy (AFAM) is a dynamical AFM-based technique very promising for nondestructive analysis of local elastic properties of materials. AFAM technique represents a powerful investigation tool in order to retrieve quantitative evaluations of the mechanical parameters, even at nanoscale. The quantitative determination of elastic properties by AFAM technique is strongly influenced by a number of experimental parameters that, at present, are not fully under control. One of such issues is that the quantitative evaluation require the knowledge of the tip geometry effectively contacting the surface during the measurements. We present and discuss an experimental approach able to determine, at first, tip geometry from contact stiffness measurements and, on the basis of the achieved information, to measure sample indentation modulus. The reliability and the accuracy of the technique has been successfully tested on samples (Si, GaAs, and InP) with very well known structural and morphological properties and with indentation modulus widely reported in literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.