Abstract
ABSTRACTEffect of titanium dioxide (TiO2) on morphology and mechanical properties of poly(vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) blend films prepared at different TiO2 contents by a melt casting process was studied. The results showed that tensile moduli in both the machine direction (MD) and the transverse direction (TD) increased with increasing TiO2 content, and calculated tensile moduli based on the Halpin–Tsai and the Kerner model were consistent with experimental ones in both the MD and TD of films containing 10 wt % TiO2. However, experimental tensile moduli exhibited smaller values compared with calculated ones, as the TiO2 content increased to 30 wt %, and it was assumed that this is due to the decrease of crystallinity of PVDF. Morphological observations indicated that TiO2 particles did not affect crystal structures of PVDF and the morphology of PVDF/PMMA amorphous phase, but hindered the crystallization of PVDF. The MD and TD elongation at break exhibited >200 and <20%, respectively. The SEM micrographs revealed that spherulites could deform along the MD when the tensile force was applied along the direction. By contrast, spherulites could not deform along the TD and fractured at very small elongation, owing to the anisotropic morphology of spherulites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40454.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.