Abstract

Nanoparticles (NPs) in agricultural systems can potentially be used as appropriate candidate for change in growth, development, productivity, and quality of plants. In the present study, we assessed the effect of TiO2 NP concentrations (0, 2, 5, and 10ppm) on changes of membrane damage indexes like electrolyte leakage index (ELI) and malondialdehyde (MDA) during cold stress (CS) 4°C in sensitive (ILC 533) and tolerant (Sel 11439) chickpea (Cicer arietinum L.) genotypes. Aggregation of NPs within the vacuole and chloroplast indicated absorbed NPs in seedlings. Bioaccumulation of NPs showed that, under thermal treatments, the sensitive genotype had more permeability to NPs compared to the tolerant one, and TiO2 content was higher during CS compared to optimum temperature. Physiological indexes were positively affected by NP treatments during thermal treatments. TiO2 NP treatments (especially 5ppm) caused a decrease in ELI during thermal treatments, whereas ELI content under CS treatment increased at 0ppm TiO2 in both genotypes. Under thermal treatments, although the genotype 11439 showed lower accumulation of MDA than ILC 533 genotype, a significant decrease was observed in MDA content at 5ppm TiO2. Results showed that TiO2 treatments not only did not induce oxidative damage in sensitive and tolerant chickpea genotypes but also alleviated membrane damage indexes under CS treatment. It was suggested for the first time that TiO2 NPs improved redox status of the genotypes under thermal treatments. New findings possibly would reveal the use of NPs generally or TiO2 NPs especially for increase of cold tolerance in crops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.