Abstract

Membranes have attracted much attention as economical methods for industrial chemical processes. The effects of the titanium dioxide nanoparticle load on the morphology and CO2/CH4 separation performance of poly (ether-block-amide) (PEBAX-1657) mixed matrix membranes (MMMs) were investigated from pressures of 3–12 bar and temperatures of 30°C–60°C. The PEBAX membranes were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermal gravimetric analysis, atomic force microscopy and tensile strength analysis. The incorporation of TiO2 nanoparticles into the polymeric MMMs improved the CO2/CH4 gas separation performance (both the permeability and selectivity) of the membranes. The CO2 permeability and ideal CO2/CH4 selectivity values of the nanocomposite membrane loaded with 8 wt-% TiO2 were 172.32 Barrer and 24.79, respectively whereas those of the neat membrane were 129.87 Barrer and 21.39, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call