Abstract

In this work, Cu–Sn–TiO2 composite coatings were electrochemically obtained from a sulfate bath containing 0–10 g/L of TiO2 nanoparticles. The effect of TiO2 particles on kinetics of cathodic electrodeposition has been studied by linear sweep voltammetry and chronopotentiometry. As compared to the Cu–Sn alloy, the Cu–Sn–TiO2 composite coatings show rougher surfaces with TiO2 agglomerates embedded in the metal matrix. The highest average amount of included TiO2 is 1.7 wt.%, in the case of the bath containing 5 g/L thereof. Composite coatings showed significantly improved antibacterial properties towards E. coli ATCC 8739 bacteria as compared to the Cu–Sn coatings of the same composition. Such improvement has been connected with the corrosion resistance of the composites studied by linear polarization and electrochemical impedance spectroscopy. In the bacterial media and 3% NaCl solutions, Cu–Sn–TiO2 composite coatings have lower corrosion resistance as compared to Cu–Sn alloys, which is caused by the nonuniformity of the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.