Abstract

Titania is widely considered as an alternative constituent for replacing heavy metal oxides in optical glasses. Its effect on optical properties, however, is complex. This is due to the dielectric properties of the prevalent ionic species, Ti4+, the potential co-existence of trivalent titanium, Ti3+, giving rise to intrinsic and extrinsic charge transfer reactions, and the existence of different coordination polyhedra, depending on matrix composition. Here, we present a systematic study of the optical properties of the soda-lime-silicate glass system as a function of TiO2 addition. We consider the silica-rich region of the SiO2-Na2O-CaO-TiO2 quaternary, which may be taken as model for a variety of technical glasses. Trends are described in the refractive index, the Abbe number, the optical bandgap and the Urbach energy. The addition of TiO2 increases the refractive index and the optical dispersion while it lowers the optical bandgap and the Urbach Energy. Results are discussed in relation to relevant literature data towards using titania silicate glasses as high-index replacements for heavy metal – containing oxide glasses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call