Abstract
We present a rigorous analysis of the primitive Gaussian basis sets used in the electronic structure theory. This leads to fundamental connections between Gaussian basis functions and the wavelet theory of multiresolution analysis. We also obtain a general description of basis set superposition error which holds for all localized, orthogonal or nonorthogonal, basis functions. The standard counterpoise correction of quantum chemistry is seen to arise as a special case of this treatment. Computational study of the weakly bound water dimer illustrates that basis set superposition error is much less for basis functions beyond the 6-31+G(*) level of Gaussians when structure, energetics, frequencies, and radial distribution functions are to be calculated. This result will be invaluable in the use of atom-centered Gaussian functions for ab initio molecular dynamics studies using Born-Oppenheimer and atom-centered density matrix propagation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.