Abstract
Abstract The time scale of rainfall data limits the accuracy and application scope of hydrologic models, especially when low-accuracy observed rainfall data are used in physically based distributed hydrologic models. In this study, an optimized rainfall method based on maximum rainfall intensity and self-similarity was established to provide different rainfall data for the physically based distributed hydrological model. The results showed the following: (1) the increase of time scale resulted in decreased rainfall intensity and an evenly distributed rainfall pattern; (2) the established disaggregation method for rainfall well described the uneven distribution in time; (3) the influence of time scale could be divided into 1–20, 20–120, and 120–360 min; (4) the conversion method between rainfall intensity and saturated hydraulic conductivity was effective at ensuring the physical meaning of the parameters on a time scale of 20–90 min. Furthermore, results showed that the reasonable time scale of application of the CASC2D model is less than 120 min. For longer time scales, the model was able to simulate peak discharge but unable to describe the flood process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.