Abstract

In the present study, the question if medium-term (4 months) caloric restriction (40%) decreases mitochondrial H2O2 production and oxidative DNA damage was investigated. Caloric restriction (CR) is the only experimental manipulation that increases maximum life span. Previous long-term CR studies have showed that CR decreases the mitochondrial rate of free radical production in diverse tissues and species. Those studies agree with the idea that the superior longevity of the restricted animals can be partly due to their lower mitochondrial rate of free radical generation. However, caloric restriction effects strongly depend on implementation time. Previous studies have shown that the decrease induced by CR on oxygen radical generation and oxidative damage to mitochondrial DNA occurs after 1 year but not after 6 weeks of restriction. In the present investigation, mitochondrial H2O2 production did not change in medium-term (4 months) caloric restricted animals, and, in agreement with that, no differences were found in either mitochondrial or nuclear oxidative DNA damage between restricted and ad libitum-fed animals. These results confirm the importance of the time of CR implementation, and show that time longer than 4 months is needed to decrease the mitochondrial rate of free radical generation and the oxidative damage to mtDNA in the rat heart.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call