Abstract

This study was conducted to know cropping cycles required to improve OM status in soil and to investigate the effects of medium-term tillage practices on soil properties and crop yields in Grey Terrace soil of Bangladesh under wheat-mungbean-T. aman cropping system. Four different tillage practices, namely, zero tillage (ZT), minimum tillage (MT), conventional tillage (CT), and deep tillage (DT), were studied in a randomized complete block (RCB) design with four replications. Tillage practices showed positive effects on soil properties and crop yields. After four cropping cycles, the highest OM accumulation, the maximum root mass density (0–15 cm soil depth), and the improved physical and chemical properties were recorded in the conservational tillage practices. Bulk and particle densities were decreased due to tillage practices, having the highest reduction of these properties and the highest increase of porosity and field capacity in zero tillage. The highest total N, P, K, and S in their available forms were recorded in zero tillage. All tillage practices showed similar yield after four years of cropping cycles. Therefore, we conclude that zero tillage with 20% residue retention was found to be suitable for soil health and achieving optimum yield under the cropping system in Grey Terrace soil (Aeric Albaquept).

Highlights

  • Holistic management of arable soil is the key to dealing with the most complex, dynamic, and interrelated soil properties, thereby maintaining sustainable agricultural production systems, the lone foundation of human civilization

  • Bulk density (Bd), particle density (Pd), porosity, field capacity, and permanent wilting point were influenced by the different tillage practices

  • The highest Bd reduction (6.41%) was found in zero tillage (ZT) followed by minimum tillage (MT) (3.95%), while deep tillage (DT) showed the lowest reduction (Figure 4(a))

Read more

Summary

Introduction

Holistic management of arable soil is the key to dealing with the most complex, dynamic, and interrelated soil properties, thereby maintaining sustainable agricultural production systems, the lone foundation of human civilization. Any management practice imposed on soil for altering the heterogenous body may result in generous or harmful outcomes [1, 2]. Unsuitable management practices cause degradation in soil health (depletion of organic matter and other nutrients) as well as decline in crop productivity [3]. Soil tillage is among the important factors affecting soil properties and crop yield. Among the crop production factors, tillage contributes up to 20% [8] and affects the sustainable use of soil resources through its influence on soil properties [9]. The judicious use of tillage practices overcomes edaphic constraints, whereas inopportune tillage may cause a variety of undesirable outcomes, for example, soil structure destruction, accelerated erosion, loss of organic matter and fertility, and disruption in cycles of water, organic carbon, and plant nutrient [10].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call