Abstract

Paddy rice fields are an important source of greenhouse gases (GHG), especially methane. In the present work, we assessed the impact on GHG emissions of two main parameters of rice production: aerobic rice production was compared with traditional flooded rice production and conventional tillage (CT) was compared with short-term and long-term no-tillage (NT) management. A field experiment was performed over three years and the GHG emissions were measured during each year. Five treatments (3 replicates) were considered: NTS7: no-tillage over seven years and sprinkler irrigation; NTS: no-tillage and sprinkler irrigation; CTS: conventional tillage and sprinkler irrigation; NTF: no-tillage and flooding; CTF: conventional tillage and flooding. The use of sprinkler irrigation rather than flooding led to decreases in nitrous oxide and methane emissions of ∼40% and more than 99%, respectively, over the 3-year experiment. The use of sprinkler irrigation compared with flooded irrigation reduced the global warming potential (GWP) about 40% and 36% in no-tillage and conventional tillage treatments, respectively. Treatment NTF decreased CH4 emissions, relative to CTF, by ∼60% over three years but the effect of NT on N2O emissions was not clear: a decrease or no effect was mostly observed in the NT treatments, relative to CT. A decrease of ∼40% in the total GHG emissions was observed in the NT treatments, relative to CT. No or small differences between NTS and NTS7 in terms of gaseous emissions were found. The short-term no-tillage and sprinkler irrigated treatment (NTS) gave lower yields than CTF in 2011 and 2012, but reached similar yields in the third year (NTS 8229 kg ha−1;CTF 8926 kg ha−1), with average savings of 75% of the total amount of water applied in CTF. The NTS7 data showed that high yields (reaching 9805 kg ha−1 in 2012) and water savings are sustainable in the long term. Considering the yield-scaled GWP of the emissions, NT gave a decrease of up to 42%, relative to CT. However, the effect of water management on yield-scaled GWP depended on the soil management: yield-scaled GWP was higher with flooding when NT was used and lower when tillage was used. It can be concluded that, for aerobic rice production, NT is an efficient strategy to minimize GHG emissions while maintaining high levels of production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.