Abstract

TiC/Inconel 718 functionally gradient materials are prepared by direct energy deposition technology. The effect of TiC content on microstructure and mechanical properties of TiC/Inconel 718 functionally gradient materials is studied. With the increase of TiC content, the microhardness and carbide grain of the specimen are improved, and the density is reduced. The grain of the specimen changes from columnar dendrites to equiaxed crystal, and the equiaxed crystal size is decreased with the increase of TiC content. However, when TiC content is above 10 wt%, the number and size of the Laves phase, coarse TiC primary, and TiC secondary dendrite are increased which causes the generation of cracks. When the TiC content is above 5 wt%, the size of carbide and the number of cracked UMT increase and the impact toughness decreases. Therefore, the optimal maximum TiC content of TiC/Inconel 718 functionally gradient materials is 5 wt% when the laser power is 2200 W.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.