Abstract
Ti3SiC2 doped with various contents of TiC coated multi-walled carbon nanotubes (MWCNTs) were fabricated by spark plasma sintering. The effect of TiC coated MWCNT content on friction and wear properties of MWCNT–Ti3SiC2 composites was investigated in this paper. The results showed that MWCNT–Ti3SiC2 composites doped with 3wt.% TiC coated MWCNTs had the best mechanical and tribological properties, and the relative density and Vicker's microhardness were 98.7% and HV1 806.2 respectively. When the counterpart was GCr15 steel ball, the friction coefficient and wear rate were 0.40 and 1.80×10−4mm3N−1m−1 at the load of 10N and sliding speed of 0.234ms−1 for 20min at room temperature. Whereas, with Si3N4 ceramic ball counterpart, the friction coefficient and wear rate were 0.52 and 4.87×10−4mm3N−1m−1 respectively. The excellent tribological performance could be attributed to the synergetic effect of the enhanced TiC coated MWCNTs and Ti3SiC2 matrix, which provided the composites with good deformation resistance and high load bear capacity, as well as the excellent balance between strength and lubricity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.