Abstract
ABSTRACTIt is well-known that metal and alloys develop internal cavities when subjected to uniaxial or multiaxial tensile strains at elevated temperature. In most cases, cavitation may lead to premature failure during forming. Therefore, damage and fracture behavior imposes significant limitations in hot metal-forming processes. Although high-Mn austenitic TWIP steels exhibit a unique combination of strength and ductility, cavitation during hot working is one issue that must be tackled. The aim of this research work is to determine the effect of Ti microaddition on cavity mechanisms of Fe-22Mn-1.5Al-1.3Si-0.5C TWIP steel under uniaxial hot-tensile condition at 800 °C and constant true strain rate of 10-3 s-1. For this purpose, light optical (LOM) and scanning electron (SEM) microscopies and image analysis were applied to quantify cavities formation along longitudinal section of deformed samples near to the fracture surface. The number of cavities greater than 10 µm (critical length) in non-microalloyed and Ti microalloyed TWIP steels were 2.75 and 3.75 cavities/mm2, respectively. On the other hand, average cavity area was 125 and 152 µm2, respectively. Both TWIP steels showed cavities type “r”, “l” and “A”. Finally, Ti microaddition to TWIP steel resulted in a predominant brittle fracture behavior due to finer grain-boundary precipitation, which weakens grains cohesion and accelerates crack growth by grain-boundary sliding. In this case, crack growth behavior is explained in terms of a void interconnection mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.