Abstract
Abstract The corrosion behavior of the Cu-Ti alloys with different Ti contents in 3.5% (mass fraction) NaCl solution was investigated using electrochemical measurements, immersion tests, mass loss measurements and SEM observation. The results show that Ti dissolved in the Cu matrix changes the corrosion process of the alloys. Pure Cu sample exhibits a typical active–passive– transpassive corrosion behavior. The anodic polarization current densities of the Cu-Ti alloys steadily increase with increasing applied potential, indicating that active dissolution of copper proceeds due to the potential difference in the galvanic coupling of Cu and Ti. The increase of Ti content decreases the corrosion resistance of the Cu-Ti alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of Nonferrous Metals Society of China
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.