Abstract
Effects of titanium carbide (TiC) addition on structural and magnetic properties of isotropic (Pr,Nd)–Fe-B nanocrystalline magnetic materials have been investigated. In this work, we investigate the effect of TiC addition on a (Pr,Nd)-poor and B-rich composition, as well as on a B-poor and (Nd,Pr)-rich composition. Rapidly solidified (Pr,Nd)–Fe–B alloys were prepared by melt-spinning. The compositions studied were (Pr 1− x Nd x ) 4Fe 78B 18 ( x=0, 0.5, and 1) with addition of 3 at% TiC. Unlike the (Pr x Nd 1− x ) 9.5Fe 84.5B 6 materials that present excellent values for coercive field and energy product, the (Pr,Nd)-poor and B-rich composition alloys with TiC addition present lower values. Rietveld analysis of X-ray data and Mössbauer spectroscopy revealed that samples are predominantly composed of Fe 3B and α-Fe. For the RE-rich compositions (Pr x Nd 1− x ) 9.5Fe 84.5B 6 ( x=0.1, 0.25, 0.5, 0.75, and 1) with the addition of 3 at% TiC, the highest coercive field and energy product (8.4 kOe and 14.4 MGOe, respectively) were obtained for the composition Pr 9.5Fe 84.5B 6.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.