Abstract

Ti4+ doped Ni0.4Cu0.2Zn0.4Fe2-xTixO4 (x = 0.0, 0.02, 0.05, 0.07, 0.10) chemical compositions are prepared by conventional solid state reaction technique. The ferrite phase formation has been confirmed from the pattern of XRD. The theoretical density (ρth), bulk density (ρB), and porosity are calculated from the XRD data and using approximate formulas. Value of ρth is found to be greater than the value of ρB indicating the formation of pores inside the bulk specimens. The micro-structural investigation has been done using Field Emission Scanning Electron Microscope and it is found that the average grain size reduces with the increase of Ti content. Saturation magnetization (Ms) also reduces with the increase of Ti content, contrarily remanent magnetization (Mr) and coercivity (Hc) increases with the concentration of Ti in the composition due to the pinning effect. The real part of the initial permeability is found to be maximum for the x = 0.02 sample which could be due to the homogeneity and high density of the sample. For increasing frequency, the dielectric constant and dielectric loss are observed to decrease.

Highlights

  • The micro-structural investigation has been done using Field Emission Scanning Electron Microscope and it is found that the average grain size reduces with the increase of Ti content

  • Grounded powder is used in X-ray diffractometer for XRD for phase identification, Scanning Electron Microscope (SEM) for micro-structural investigation and Vibrating Sample Magnetometer (VSM) for magnetic properties measurement

  • Increase of lattice constant with Ti content for x = 0.0, x = 0.05, x = 0.07 & x = 0.10 is justified by the fact that indicates that the ionic radii of Ti is greater than that of Fe that is why lattice spacing increases for replacing Fe3+ (0.64 Å) by Ti4+ (0.74 Å)

Read more

Summary

Introduction

Metal doped Nickel-Copper-Zinc ferrites are very important for their wide applications in technology They can be used as inductors, as Multilayer Chip Inductor (MLCI), transformer core, recording heads and storage devices and in diagnosis purposes [1] [2] [3]. They are attractive in research and technology for their high magnetic permeability, low magnetic losses, lower cost and easy manufacturing process and for superior magnetization properties [4] [5]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.