Abstract

Precipitation behaviors of Ni-Cr-Co-based superalloys with different Ti/Al ratios aged at 750, 800, and 850 °C for up to 10,000 h were investigated using scanning and transmission electron microscopy. The Ti/Al ratio did not significantly affect the diameter of the γ′ phase. However, the volume fraction of the γ′ phase increased with increasing Ti/Al ratios. The η phase was not observed in alloys with a small Ti/Al ratio, whereas it was precipitated after aging at 850 °C for 1000 h in alloys with a Ti/Al ratio greater than 0.80. Higher aging temperatures and higher Ti/Al ratios led to faster η formation kinetics and accelerated the degradation of alloys. It is thought that the increase in hardness with an increase in the Ti/Al ratio is attributed to the effective inhibition of the γ′ phase on dislocation movement due to the increase in the volume fraction of the γ′ phase and an increase in the antiphase boundary (APB) energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call