Abstract

A three-dimensional model with a complete set of governing equations for all components of the PEM fuel cell is developed to investigate the permeability effects on the transport of reactive species and the flooding phenomenon in PEM (Proton Exchange Membrane) fuel cell. This model couple fluid flow distribution, species, electric potential, electric current density, and saturation level in the flow channel, gas diffusion porous layer, catalyst layer, and fuel cell polymer membrane. The electrodes and channels are modeled as two-phase. The effects of isotropic and non-isotropic permeability have been studied and the simulation results show that in order to obtain higher efficiency, the permeability of the gas diffusion layer should be high in the flow direction(in-plane) and perpendicular to the main flow (through plane). High permeability in the direction of the main flow and Low permeability in the direction perpendicular to the main flow will also have a high yield. The current study shows that by optimizing the permeability of the gas diffusion layer, a higher efficiency can be achieved in the fuel cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.