Abstract
SummaryThe response of an elastic system having a single degree of freedom, to a vibratory force whose waveform can be varied, is examined. The variable waveform is produced by a system of two pairs of unbalanced rotors in which one pair rotates at three times the speed of the other pair. The waveform depends on the frequency of excitation, the phasing of the rotors and the ratio of their amounts of unbalance. If the rotors are run at a speed at which the faster pair rotates above resonance while the slower pair rotates below resonance, a frequency is found at which the rate of change of amplitude with respect to frequency is zero. At this point, however, the waveform is quite sensitive to small changes in the frequency of excitation. If the rotor speeds cannot be maintained constant, and if stable vibration waveforms are required, it is necessary to run the slowest rotor well above the resonant frequency where both the amplitude and waveform will be virtually independent of frequency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.