Abstract

The rapid spread of lumpy skin disease (LSD) globally poses a serious threat to the agricultural sector. The timely and accurate diagnosis of the disease is crucial to control LSD. This study aimed to determine the effect of thioredoxin on the immunogenicity of the recombinant P32 (rP32) protein of LSD virus (LSDV). Since the P32 protein is poorly soluble, it is often expressed by adding an auxiliary sequence of a highly soluble partner protein such as thioredoxin. The P32 gene fragment was amplified using a polymerase chain reaction from genomic DNA used as a template. The resulting DNA fragments were cloned into the pET32a vector, and transformed into Escherichia coli BL21 (DE3) cells through electroporation. Purification of the rP32 protein was performed using a HisTrap column. Purified rP32 protein fused with thioredoxin (rP32Trx) was characterized by western blotting, liquid chromatography with tandem mass spectrometry and indirect enzyme-linked immunosorbent assay (ELISA). Indirect ELISA revealed that, despite the lower molecular weight, the main part of the antibodies in the serum of immunized mice was directed against thioredoxin and not the target P32 protein. Thus, the antibody titers against rP32Trx were 1:102400, whereas antibody titers against heterologous recombinant 3BTrx and PD1Trx proteins were 1:25600 and 1:51200, respectively. Concurrently, the antibodies did not bind to the heterologous recombinant PD1 protein, which did not contain thioredoxin. The results showed that the rP32 protein fused with the partner protein thioredoxin could not be used to obtain polyclonal and monoclonal antibodies. However, the recombinant fusion protein rP32Trx can be used to develop a serological test to detect antibodies, since antibodies against thioredoxin were not detected in the animal sera.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.