Abstract

Zinc selenide (ZnSe) thin films with various thicknesses were grown on ultrasonically clean glass substrates using vacuum evaporation of 99.99% pure ZnSe powder. Thickness dependence of the structural, optical and electrical properties was thoroughly investigated. X-ray diffraction (XRD) analyses revealed that (110) ZnSe plane is the dominant crystal plane for all the fabricated films. Both dislocation density and micro-strain go down with the increase in film thickness, indicating lower lattice defects and improvement in crystallinity at higher film thickness. Transmittance spectra show that all the films have almost linear upward tendency of transmittance in near-infrared region and small fluctuations in visible region for higher-thickness films. With the increase in film thickness, the optical bandgap increases and also an increasing tendency of dielectric constant was observed. Studies of electrical properties showed a sharp increase in carrier mobility and concentration with film thickness. As the film thickness increases from 30 to 90 nm, the carrier mobility goes up from 255 to 1250 cm2/VS and the carrier concentration increases from 2.14 × 1018 to 9.37 × 1018 cm−3. The electrical transport properties of the deposited thin films were explained in terms of scattering of the charge carrier.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.