Abstract

This study investigates the flexural and impact behaviour of GFRP laminates after exposure to elevated temperatures. The effect of fibre's length and orientation, laminate's thickness, and exposure time is studied. A total number of 540 tests in terms of three-point bending and Charpy impact tests were conducted to obtain the mechanical properties. In addition, SEM analyses were carried out to investigate the degradation mechanisms. Finally, statistical study was conducted to investigate the contribution of each variable and develop probabilistic models using ANOVA and linear Bayesian regression method. The results showed that generally the flexural and impact properties of GFRP laminates decrease by increasing the temperature and time of exposure as well as decreasing the laminates' thickness. It is also observed that laminates with unidirectional fibres have the best performance under elevated temperatures, while laminates with randomly distributed fibres are the most vulnerable type. The performance of laminates with woven fibres are almost between those two other types. However, all types of the laminates lost almost all their flexural strength and impact energy absorption capacity at 300 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.