Abstract

We study the Josephson effect in a gapped graphene-based superconductor/barrier/superconductor junction using the Dirac-Bogoliubov de Gennes (DBdG) equation for theoretical prediction. A massive gap of this regime is induced by fabricating a monolayer graphene on substrate-induced bandgap and superconductivity is acquired by the proximity effect of conventional superconductor (s-wave superconductor) through top gate electrodes. This Josephson junction is investigated in case of thick barrier limit that is pointed out the effect of applying a gate voltage VG in the barrier. We find that the switching supercurrent can be controlled by the gate VG and the effect of thick barrier can influence the switching linear curve. When the barrier is adjusted to manner of a potential well which is inside the range of , the supercurrent in the thick barrier case is examined to the same behavior as the thin barrier case. The controlling supercurrent through the electrostatic gate is suitable for alternative mechanism into experimental test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.