Abstract
In this work, the performance enhancement of a HFO-1234yf mobile air conditioning (MAC) system with a suction/liquid line heat exchanger (SLHX) was carried out experimentally by tuning the thermostatic (constant superheat) expansion valve (TXV) and its impact on the environment was also evaluated. The optimum charge of HFO-1234yf and HFC-134a systems was found to be 670 g and 740 g, respectively. The results showed that the HFO-1234yf system with SLHX had better coefficient of performance (COP) and exergy efficiency when compared to HFC-134a system with SLHX at idling condition, whereas it had reduced performance at other speed conditions. The tuning of the TXV in the HFO-1234yf system had a positive influence on the COP, cooling capacity, and exergy efficiency and those were higher than that of existing HFC-134a system by 4.3–8.6%, 6.5–10.1%, and 3.7–5.1%, respectively, at idling and city speed conditions, whereas those were slightly lower at high-speed conditions. The total CO2 equivalent emission of tuned and un-tuned HFO-1234yf system was 27.98% and 24.64% lower than that of the existing HFC-134a system. The outcome of this study indicated that the SLHX implementation in the HFO-1234yf MAC system with tuned TXV could be a possible option to replace HFC-134a.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.