Abstract
Protein hydrolysates have attained great attention due to a good nutritive food ingredient and higher biological activities. In this study, thermosonication, ultrasound and heat were used as a pre-treatment to obtain (<3KDa) hydrolysate from mung bean and white kidney bean to understand the mechanism of cholesterol absorption into micelle and inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA) activity. Size exclusion high performance liquid chromatography (SE-HPLC) results of mung bean showed that the concentration of peptides (0.5KDa-1KDa and 1-3KDa) in the hydrolysate were significantly (p<0.05) increased after thermosonication while, the peptides concentration (1-3KDa) in white kidney bean was significantly (p<0.05) decreased. Thermosonication of mung bean hydrolysate exhibited higher inhibition of cholesterol solubilization, hydrophobicity and antioxidant activities. In addition, there was no difference observed in HMG-CoA activity and hydrophobicity between ultrasound alone and ultrasound combined with heat i.e. thermosonication treated hydrolysate of white kidney bean. Changes in secondary and tertiary structures were also analyzed under different processing conditions with maximum change due to thermosonication. Results indicated that mung bean hydrolysate had a great potential for inhibition of cholesterol synthesis and its solubility in the micelle, antioxidant activity and also convinced for its application in food and nutraceutical industries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Ultrasonics Sonochemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.