Abstract

This study explored how a thermophilic microbial agent altered nitrogen transformation, nitrogen functional genes, and bacterial communities during bean dregs composting with (T) and without (CK) a thermophilic microbial agent for 15days. The results showed that the maximum temperature in T reached 73°C and remained above 70°C for 8days, while that in CK was only 65°C. The pH in T had essentially stabilized on day 7, while that in CK was still increasing. On day 15, the seed germination index (GI) of T (95%) reached maturity (defined by GI ≥ 85%), while the GI of CK was only 36%. The concentrations of total nitrogen, water-soluble nitrogen, ammonia nitrogen, and nitrate nitrogen in T (2.5%, 18.9g/kg, 8.75g/kg, and 1.69g/kg) were all lower than those in CK (3.6%, 28.9g/kg, 12.75g/kg, and 6.82g/kg). During composting, Bacillus played a major role in nitrogen reduction, nitrogen mineralization, denitrification, and the conversion between nitrite and nitrate. Weissella played a major role in nitrogen assimilation. Komagataeibacter and Bacillus played a major role in nitrogen fixation in CK and T, respectively. Nitrification was not observed during composting. The nosZ gene, which converts nitrous oxide to nitrogen, was found only in T. Network analysis suggested that the average number of neighbours in T was 3.30% higher than that in CK and the characteristic path length in T was 14.15% higher than that in CK. Therefore, the thermophilic microbial agents could cause nitrogen loss but promote the maturity of bean dregs, which have great potential application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call