Abstract

In this study, the microstructural evolution and mechanical properties of a newly developed Ti-40.7Zr–24.8Nb (TZN) alloy after different thermomechanical processes were examined. As-cast TZN alloy plates were solution-treated at 890 °C for 1 h, after which the thickness of the alloy plates was reduced by cold rolling at reduction ratios of 20%, 56%, 76%, and 86%. Stress-induced α” formation, {332} <113> β mechanical twinning, and kink band formation were observed in the cold-rolled TZN alloy samples. In the TZN sample after cold rolling at the 86% reduction ratio plus a recrystallization annealing at 890 °C for 1 h, the deformation products of a stress-induced α” phase, {332}<113> β mechanical twinning, and kink bands disappeared, resulting in a fine, equiaxed single β phase. The alloy samples exhibited elongation at rupture ranging from 7% to 20%, Young's modulus ranging from 63 to 72 GPa and tensile strength ranging from 753 to 1158 MPa. The TZN alloy sample after cold rolling and recrystallization annealing showed a yield strength of 803 MPa, a tensile strength of 848 MPa, an elongation at rupture of 20%, and an elastic admissible strain of 1.22%, along with the most ductile fractures during tensile testing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.