Abstract

The effect of thermomechanical processing on fatigue crack propagation (FCP) is examined for 70/30 brass and 305 stainless steel. It is found that grain size and cold work induced changes in yield strength, ductility, and preferred orientation have a minor effect on FCP. Rather, cyclically stabilized properties of material in the crack tip plastic zone are believed to control the FCP process. Although mechanical processing fails to significantly alter the rate of FCP, it is apparently responsible for the unique fracture path observed in specimens oriented at an angle(A) to the rolling direction. Deviation of the crack path out of the plane of maximum net section stress is believed to be associated with mechanical fibering andJor crystallographic texturing effects. The complex fracture mode transition observed in cold worked 70/30 brass also is associated with the deformation texture of the starting material. For the cold-worked 305 stainless steel, striation spacings are correlated with the stress intensity range for specimens tested in the longitudinal, transverse, and “angle” orientations. Comparison of these data with corresponding macroscopic data indicate that an approximately one-to-one correspondence exists between macroscopic and microscopic fatigue crack growth rates over the range investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.