Abstract

Fiber-reinforced ceramic matrix composites (CMCs) exhibit excellent thermo-mechanical properties including outstanding resistance against damage and fatigue. Some CMCs show occasionally even a strength enhancement after fatigue, often interpreted with relieve of internal stresses and interfacial degradation. This study reports the influence of low-cycle thermo-mechanical preloading on the bending and tensile strength of carbon fiber-reinforced silicon carbon (C/C-SiC). For this purpose two C/C-SiC materials with the same fiber architecture but different assumed internal stress states were subjected to single and cyclic mechanical preloads up to 90% of their ultimate strength level at room temperature and at 350 °C. Statistical evaluations of the experiments show that the ultimate strength values were surprisingly unchanged after preloading. The results are discussed regarding the thermal residual stresses (TRS).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call