Abstract

Background: The color stability of dental restorative materials is important for long-term clinical success. Objectives: The objective of this study was to examine the effect of thermocycling on the color and translucency stability of monolithic zirconia. Materials and methods: A total of 80 disc-shaped specimens (1 cm diameter) were produced from monolithic zirconia material, Katana High Translucent (Kuraray Noritake Dental, Kurashiki, Japan). The specimens were prepared in four different thicknesses: 0.5 mm, 1 mm, 1.5 mm and 2 mm. Before thermocycling, color measurements of the specimens were made by a spectrophotometer (Spectro Shade TM MICRO; MHT Optic Research AG, Milan, Italy). After the thermal aging procedure, the color measurement was repeated. Data obtained from the study were analyzed with descriptive statistics, correlation analysis, one-way ANOVA and Tukey’s tests. Results: After thermocycling, the L*, a*, b* values decreased at all thicknesses. The maximum change in the L*, a* and b* values was observed in 0.5-mm-thick specimens, while the least change was observed in 2-mm-thick specimens. The amount of color change in the specimens after thermocycling was found to be the highest in 0.5-mm-thick specimens (ΔE = 0.91 ± 0.02), and the lowest in 2-mm-thick specimens (ΔE = 0.85 ± 0.01). While a statistically significant color change (ΔE) was observed in 0.5-mm-thick specimens (p E) was observed (p > 0.05) in 1-mm, 1.5-mm, and 2-mm-thick specimens. After thermocycling, the translucency parameter (TP) values decreased at all thicknesses. The highest change in the TP values was observed in 0.5-mm-thickspecimens (1.09 ± 0.03), while the lowest change was observed in 2-mm-thickspecimens (0.40 ± 0.04). While a statistically significant change in the TP values was observed in 0.5-mm-thick specimens (p 0.05). Conclusion: Although the color and translucency values after thermocycling exhibited statistically significant changes in the 0.5 mm thickness group, a statistically significant difference was not observed in the other thickness groups.

Highlights

  • Monolithic zirconia restorations have many advantages such as enabling for minimal invasive tooth preparation, causing minimal wear on the opposing teeth and exhibiting high flexural strength

  • The objective of this study was to examine the effect of thermocycling on the color and translucency stability of monolithic zirconia

  • Color measurements of the specimens were made by a spectrophotometer (Spectro Shade TM MICRO; MHT Optic Research AG, Milan, Italy)

Read more

Summary

Introduction

Monolithic zirconia restorations have many advantages such as enabling for minimal invasive tooth preparation, causing minimal wear on the opposing teeth and exhibiting high flexural strength. These restorations can be produced in the laboratory with computer-assisted manufacturing (CAD/CAM) systems in a short time without adding any porcelain [1]-[6]. One of the main goals in prosthetic dentistry is obtaining high esthetics by producing dental restorations that mimic the color and translucency of natural teeth. For long-term clinical success, the color stability of dental restorative materials is as important as their mechanical properties. The color stability of dental restorative materials is important for long-term clinical success. While a statistically significant change in the TP values was observed in 0.5-mm-thick specimens (p < 0.05), there was a statistically insignificant change in the TP

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.