Abstract

To evaluate the effect of thermo-mechanical cycling (TMC) on fracture resistance of different computer-aided design/computer-aided manufacture (CAD/CAM) crowns. A total of 42 CAD/CAM crowns were fabricated on epoxy resin maxillary first premolar teeth and divided into three groups (n = 14) according to the material used: IPS e.max CAD (Ivoclar Vivadent) lithium disilicate (LD), Vita ENAMIC (VE) (VITA Zahnfabrik), Tetric CAD (Ivoclar Vivadent). Also, each group was subdivided into two equal subgroups according to TMC (n = 7). Subgroups (O) without TMC and subgroup (W) with TMC (5-55°C, 30 second, 75,000 cycles). All samples in each group were cemented with a universal bond (Tetric N bond universal) and adhesive resin cement (Variolink Esthetic DC) (Ivoclar Vivadent). Subsequently, the samples were loaded to failure in a universal testing machine at a crosshead speed of 1 mm/min, and the fracture pattern and the fracture resistance in each group were recorded. Fracture resistance was analyzed by one-way analysis of variance (ANOVA) test, followed by Tukey's post hoc test for pairwise comparison. Fracture resistance showed a significant difference between the tested groups before and after TMC; IPS e.max CAD has the highest value (1233.35 ± 97.72, 1165.73 ± 199.54 N) followed by Tetric CAD (927.62 ± 42.5, 992.04 ± 53.46 N) and Vita ENAMIC has lowest value (506.49 ± 74.24, 354.69 ± 90.36 N). Thermo-mechanical cycling affected the fracture resistance of both polymer-based CAD/CAM crowns. For dental practitioners, both IPS e.max CAD and Tetric CAD can be used clinically for posterior teeth, providing satisfactory results and resistance to fracture. How to cite this article: Elmokadem MI, Haggag KM, Mohamed HR. Effect of Thermo-mechanical Cycling on Fracture Resistance of Different CAD/CAM Crowns: An In Vitro Study. J Contemp Dent Pract 2024;25(1):29-34.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call