Abstract
Fiber-reinforced ceramic matrix composites (CMCs) exhibit excellent thermo-mechanical properties including outstanding resistance against damage and fatigue. Some CMCs show occasionally even a strength enhancement after fatigue, often interpreted with relieve of internal stresses and interfacial degradation. This study reports the influence of low-cycle thermo-mechanical preloading on the bending and tensile strength of carbon fiber-reinforced silicon carbon (C/C-SiC). For this purpose two C/C-SiC materials with the same fiber architecture but different assumed internal stress states were subjected to single and cyclic mechanical preloads up to 90% of their ultimate strength level at room temperature and at 350 °C. Statistical evaluations of the experiments show that the ultimate strength values were surprisingly unchanged after preloading. The results are discussed regarding the thermal residual stresses (TRS).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.