Abstract

A series of continuous cooling tests were performed on TiAl alloys using a Gleeble3500 machine to investigate the effect of thermal stresses on the microstructure. The results show that macroscopic thermal stresses promote correlated nucleation of γ lamellae. The trend of the dominance of one twin-group γ variants in local regions is weakened, and the γ/γ interfaces tend to be true twin and pseudotwin boundaries rather than 120° rotational faults under macroscopic thermal stresses. Meanwhile, thermal-induced deformation generated under the effect of both microscopic and macroscopic thermal stresses results in numerous low angle grain boundaries (LAGBs) and dislocations. The LAGBs and dislocations distribute heterogeneously among lamellar colonies and phases. No mechanical twins are observed due to the low strain and low strain rate characteristics of the thermal-induced deformation. These findings could shed light on understanding and preventing the cracking of TiAl components during cooling process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.