Abstract

Thermal deformation has a significant influence on the microstructure of high-strength antiseismic steel. The effect of hot deformation on the microstructure of experimental steel was studied by the Gleeble-3800 thermal simulator. The microstructure of the steel was characterized by the metallographic microscope, microhardness, tensile test, field emission scanning electron microscope, electron backscatter diffraction, and high-resolution transmission electron microscope. The results show that the core microstructure of the test steel is composed of polygonal ferrite and lamellar pearlite. The test steel is mainly ductile fracture. Tensile strength and hardness increase with the decrease of temperature. At 650 °C isothermal temperature, the ferrite distribution was uniform, the average grain size was 7.78 μm, the grain size grade reached 11, the pearlite lamellar spacing was 0.208 μm, and the tensile fracture was distributed with uniform equiaxed dimples. Polygonal ferrite grain boundaries have high density dislocations that can effectively block the initiation and propagation of cracks. However, there are some low dislocation boundaries and subgrain boundaries in ferrite grains. Precipitation strengthening is mainly provided by fine precipitates of V-rich carbonitride in experimental steel. The precipitates are round or narrow strips, about 70–100 nm in size, distributed along ferrite grain boundaries and matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.