Abstract
Abstract During the impact and solidification of thermal spray droplets on a substrate, the density increases when the droplet solidifies. Depending on the material, the changes in density could be significant. For example, aluminum oxide's density changes by 66%, while the changes are 12% and 19% for nickel and copper, respectively. For zirconia, this change is 24%. The effect of such densification on the dynamic of the droplet impact and the formation of porosity could be dramatic. In this study, the effect of shrinkage of a molten droplet during solidification on droplet impact is numerically investigated for several materials. Results for the impact of molten alumina, nickel, copper, and zirconia droplets on both smooth and rough surfaces are presented. The results of variable density cases are compared with those assuming constant density. The effect of thermal shrinkage is particularly vital in the interaction of two impacting droplets. The shrinkage promotes the formation of additional pores.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.