Abstract

The bending strength of composite made from fly ash and glass waste can be improved by controlling chemical composition of the raw materials and sintering temperatures. In this study, the composites made from mixture of various weight fractions between fly ash (FA) and glass waste (GL). Each mixture was uni-axially pressed with various compacting pressures to produce green body. The formed green body was then sintered at various temperatures from 900 °C to 1100°C for 2h. From the experimental result, it shows that the bending strength of composite fly ash and glass waste is highly varied based on the weight fraction of glass waste content, sintering temperatures and compacting pressures. The highest bending strength value is 44.53 MPa obtained from specimen that contains 50 (% wt.) of glass waste with sintering temperature of 1050 °C and compacting pressure of 130 MPa. A thermal shock test was performed on the specimen composites of 50FA-50GL by heating up to various temperatures and followed by quenching (rapid cooling) to water media. Bending test was then done on the thermal shocked specimen. The bending strength of specimen decreases sharply around 80.93 % from its original strength when subjected to temperature gradient (ΔT) of 285 °C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call