Abstract

ABSTRACTThe aim of the present work is to investigate the influence of thermal shock cycling on the quasi‐static and dynamic flexural properties of epoxy matrix composites reinforced with natural flax fibers fabric. Polymer composite laminates reinforced with four plies of natural flax fiber fabric have been manufactured. The samples have been exposed to different number of thermal shock cycles (0, 50, 100, 200, 300, 400), at a temperature range from −40 °C to +28 °C. Dynamic mechanical analysis (DMA) tests were performed on both pristine and thermally shocked specimens in order to determine their viscoelastic response. Due to the thermal shock cycling and after 100 thermal shock cycles, a maximum decrease in storage and loss modulus on the order of 50% was observed. After 100 thermal shock cycles, no further degradation of dynamic properties was observed. On the contrary, damping factor and glass transition temperature values showed a minor variation as number of thermal shock cycles increased. In addition, the time–temperature superposition principle (TTSP) was successfully applied, confirming the fact that the flax fiber fabric‐epoxy laminate is a thermo‐rheologically simple material. Likewise, quasi‐static three‐point bending tests were executed and a maximum decrease of 20% in flexural strength was observed after 400 thermal shock cycles. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48529.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call