Abstract
The present investigation deals with the natural convection (NC) of Al2O3-Cu-water hybrid nanofluid (HNF) within a “ π”-shaped cavity under the influence of an externally applied magnetic field (MF). Also we studied the porous media with radiative effect as well as common heat transfer for better fitting to real industrial problems. The inverse U shaped-cavity design includes upper walls that are partially heated and wavy right and left walls designed for cooling purposes, while the remaining walls are maintained as adiabatic. A FORTRAN home code using finite difference method-based approach is adopted to solve the governing equations. A verification is performed by comparing with previous numerical investigations to substantiate the precision of the established numerical model. The findings are expressed in term of stream function, isotherms, and local and averaged Nusselt number. It was found that by increasing amplitude (A), location of the heater (D), thermal radiation parameter (Rd) and wavelength (λ) about 140%, 94%, 775%, and 28% Nuavg increases, respectively. In addition, by increasing Dimensionless of heat source/sink length (B), Ha, and heat generation/absorption coefficient (Q) about 20%, 1.1% and 28% Nuavg decreases, respectively. Also, Nuavg first decreases and then increases by increasing Ra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.